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A horizontal fluid layer whose lower surface temperature is made to vary with 
time is considered. The stability analysis for this situation shows that the cri- 
terion for the onset of instability in a fluid layer which is being heated from below, 
depends on both the method and the rate of heating. For a fluid layer with two 
rigid boundaries, the minimum Rayleigh number corresponding to the onset of 
instability is found to be 1340. For slower heating rates the critical Rayleigh 
number increases to a maximum value of 1707.8, while for faster heating rates 
the critical Rayleigh number increases without limit. 

Two specific types of heating are investigated in detail, constant flux heating 
and linearly varying surface temperature. These cases correspond closely to situa- 
tions for which published data exist. The results are in good qualitative agree- 
ment. 

1. Introduction 
It is well known that if a layer of stationary fluid is heated from below or cooled 

from above, a point is reached when the adverse density stratification causes an 
instability in the fluid. By solving the linearized equations perturbed about a 
stationary fluid with a uniform temperature gradient, considerable success has 
been realized in obtaining an analytical understanding of the basic phenomena 
associated with the instability. These results are summarized by Chandrasekhar 
(1961). If heat is introduced slowly, the instability usually manifests itself in the 
form of two-dimensional rolls, the value of the critical Rayleigh number being 
dependent on the form of the fluid boundaries. 

On several occasions, however, it  has been observed that thermally induced 
instabilities occur under conditions which are at  variance with the existing 
theories. It was observed by Graham (1933) that a columnar mode of instability 
could be established at a smaller Rayleigh number than that predicted by the 
theory, but no numerical data were reported. Measurements of the minimum 
temperature differences required for maintained columnar convection were 
recorded by Chandra (1938) and by Sutton (1950). These temperature differences 
are considerably smaller than the values predicted theoretically, particularly a t  
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small fluid depths. It was suggested by Sutton that the non-uniform temperature 
gradient, caused by rapid heating, might be the cause of columnar instability. 

While measuring the rate of heat transfer across layers with two rigid bound- 
aries, de Graaf & van der Held (1953) noted that columnar instability could be 
initiated at Rayleigh numbers as low as 1400, rather than 1707.8 as predicted by 
the existing theory. These authors also agreed with Sutton that the rate of heating 
might be important in accounting for the discrepancy. Soberman (1959) measured 
the critical Rayleigh number over a large range of heating rates and found that 
the rate of heating did indeed influence marginal stability and could increase the 
critical Rayleigh number considerably. 

Studying the evaporative cooling of water, Spangenberg & Rowland (1961) 
found that the temperature profile at marginal stability was very different from 
that existing in the resulting flow field and that the critical temperature difference 
was much greater than that predicted by the existing theory. The motion which 
developed from the instability was found to be in the form of two-dimensional 
plunging sheets of cold liquid. 

The foregoing experiments have established that thermally induced instabili- 
ties may occur in fluids over a range of Rayleigh numbers varying from slightly 
less than the theoretical value to several times the theoretical value. The actual 
value depends on the rate of heating, and the resulting fluid motion is apparently 
different in structure from the usual two-dimensional rolls. 

In  the present study it is attempted to establish analytically the effects of a 
substantially non-uniform temperature gradient on the criterion for marginal 
stability. The analysis is presented in $2 and the general results of the analysis 
are given in $3. In  $4 the general results are applied to particular cases which 
correspond closely to the physical situations existing in the experiments men- 
tioned above. This permits direct comparison of the present theory with the 
published experimental results. 

2. Analysis 
Consider a fluid layer which is originally isothermal and a t  rest. The fluid is 

considered infinite in horizontal extent, but finite in the vertical direction. At 
some time t = 0 heat is applied in an arbitrary manner with respect to time, but 
uniformly with respect to the lower bounding surface. The resulting conduction 
temperature profile will therefore depend on the time and the vertical spatial co- 
ordinate. The problem is to find the time after the onset of heating at  which the 
fluid becomes unstable. 

The linearized stability equation for such a situation has been derived by Gold- 
stein (1959). In  deriving the stability equation it is assumed that the arbitrary 
disturbance which leads to the instability may be Fourier represented. In  par- 
ticular, the vertical velocity component w of the disturbance and the tempera- 
ture perturbation T are expanded as follows 

w(x, y, x ,  t )  = W(x, t ) e i ( k z z + k y g ) ,  

T(z,y, x , t )  = 8(z, t ) e i ( k z r + k y g ) ,  

(1) 

( 2 )  
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where k = (k; + k;)* defines the wavelength of the arbitrary disturbance. The 
plane x = 0 represents the lower extremity of the fluid, z = h the upper extremity, 
and the co-ordinate z points in the upward vertical direction. The co-ordinates x 
and y lie in the horizontal plane. The dimensional equation for W may be written 
in the form 

Here, K is the thermal diffusivity, v is the kinematic viscosity, a is the coefficient 
of thermal expansion, g is the acceleration due to gravity, and T s  is the un- 
perturbed temperature which will be a function of the time t as well as the co- 
ordinate x .  The velocity and the temperature perturbation are related by the 
equation 

The boundary conditions at  the lower surface, z = 0, and the upper surface, 
z = h, are that the velocity and temperature perturbations should vanish. That 
is, on x = 0, h, 

The solution to equation (3), under the conditions (5), is complicated by the 
fact that aTco)/az depends on both z and t. Thus the coefficients in (3) are not 
constant and the variables do not separate. However, in order to determine the 
onset of instability it is sufficient to study the instantaneous conduction tem- 
perature profile and to ask if the fastest growing wave component of an arbitrary 
disturbance is growing, decaying, or is neutrally stable. Then at any instant in 
time, the conduction temperature profile T(0) will be a function of z only so that 
the term aT(o)/az in (3) may be replaced by dT(O)/dx giving 

It was shown by Lick (1965) that solutions to (6) of the form 

W(z,t)  = w*(x)ed 

exist, where a is real, and that these solutions correspond to physical observa- 
tions. Since an arbitrary disturbance will be damped out if its fastest growing 
wave component is decaying, the onset of instability is defined here as the point 
a t  which the fastest growing wave component is neutrally stable. Then since a is 
real, aW/at will be zero for this wave so that (6) and ( 5 )  become, respectively, 

on x = 0, h, 

The fact that dT@)/dz  is a function of z complicates the solution to (7). Although 
a series solution could be obtained, such a solution would require elaborate 
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numerical exploration of the special functions so defined and these functions 
would be different for each form of dT(O)/dz. A useful approximation, which 
eliminates this difficulty while still retaining the essential feature of a non- 
uniform temperature gradient, is to represent the actual temperature profile by 

TO T 
" 

Tl TO T 
FIGURE 1. Actual temperature profile and two-segment approximation. 

two straight line segments as shown in figure 1. Using the same temperature 
limits, the plane z = I is constructed so that the area under the actual and 
approximate curves is the same. This same approximation was used by Lick 
(1965) to calculate the growth rate of disturbances in a finite fluid layer having 
stress-free surfaces. The depth 1 will be referred to as the thermal depth. Then 
introducing dimensionless variables c = z/h, w = (h/K)u* and a = kh, equation 
( 7 )  gives (D2-u2)3w1 = -a2Rwl (0 < 5 < E ) ,  (9) 

( 0 2 - a 2 ) 3 w 2  = 0 ( E  < 5 < 1). (10) 

Here D = d/dc, R = ag(To-Tl)h4/KvZ is a form of Rayleigh number, Tl is the 
original isothermal temperature and To is the instantaneous temperature at 
z = 0, and 8 = l/h. 

The boundary conditions a t  the interface of the two regions 6 = E are that the 
velocity, stresses, temperature, and heat flux are all continuous. These conditions, 
together with (8), result in the following conditions on w1 and 02: 

on c =  0, Dw1 = (D2 - ~ 2 ) 2 ~ 1  = 0; (11) 

on 5 = E ,  (w1-w2) = (D"w1- D%2) = 0 (n = 1,2,3,4,5);  (12) 

on <=  1, w2 = Dw, = (D2 - a2)2u2 = 0. (13) 

w1 = C,e-rls+C2e-yzs+C,e-rss+C,errt;3-C,er2st-CGe~a5, (14) 

w2 = (C7+ C&+ C,cz)e-a5+ (Clo+ CllC+ C12C2)ea5, (15) 

y1 = a[l- (R/a4)*]*, (16) 

7, = ~ $ 1  + Q( 1 + iJ3)(R/a4>4]*, (17) 

y3 = a[l + $(l-  iJ3)(R/a4)*]g. (18) 

Applying the boundary conditions ( l l ) ,  (12), (13) to the solution (14), (15) pro- 
duces twelve homogeneous algebraic equations for the twelve arbitrary constants 

The general solutions to (9) and (10) are 

where yl ,  y2  and y3 are defined by 
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and the determinant of the coefficients of these constants is set equal to zero. 
That is, the following determinant is zero: 

0 

0 

0 
- se-aE 

-(l-as)e-as 

a( 2 - as) e-ae 

- a2( 3 - as) e-ae 

a3(4 - ae)e-ae 

- a4( 5 - as) e-aE 

e-a 

(l-a)e-a 
- a4e-a 

0 

0 

0 
- g2e-a~ 

- s( 2 - as) e-as 

- (2-4as+a2s2)e-ac 

a( 6 - 6as + a2 s2) e-ae 

-a2(12- 8 a e + ~ 2 e ~ ) e - ~ ~  

a3(20- l O a ~ + a ~ e ~ ) e - ~ "  

e-a 

( 2  - a )  e-a 

(8 - a2) e-a 

* (19) 

The first column represents 3 columns corresponding t o j  = 1,2,3.  The remaining 
6 columns in (19) are obtained by replacing y j  by - y j  and a by - a. 

The eigenvalues contained in (19) are the Rayleigh numbers R, and they are 
obtained as follows. For a given wave-number a and thermal depth B ,  the Ray- 
leigh number R is varied until the determinant (19) is zero. Since the elements of 
(1 9) are complex while the parameter R is real, the possibility of simultaneous 
vanishing of both the real and imaginary parts of (19) should be demonstrated. 

Using the fact that y2  and y3 are complex conjugates and writing y2 = yZR + i yZI  
and y3 = y2R - where y2R and yZz are real, the solution (14) may be written 
in the form 

w1 = C,e-yic+ C;e-raRccosy,,<+ C$e-yzRcsiny,,~+ C4erlc 

+ Cz eras 5 cos yZz 5 + Cz e m c  sin yZz 6. 
Then since w2 contains only real functions and since the boundary conditions 
(1 l), (12) and (13) involve only real functions of w1 and w2, a determinant similar 
to (19) could be constructed which has only real elements. That is, the roots of the 
complex determinant (19) may be found by varying the real parameter R. 

For given a and E, there is a discrete set of values of R which reduce the deter- 
minant (19) to zero. Since the smallest temperature difference which will permit 
a motion of the fluid is being sought, the smallest positive value of R is the re- 
quiredroot. In  this way a value of R is obtained for each-wave number a and ther- 
mal depth e. The minimum value of R with respect to a is the critical Rayleigh 
number for that particular thermal depth E. 

3. General results 
The iterative procedure described in $2 for reducing the determinant (19) to 

zero requires repeated evaluation of a twelfth-order determinant with complex 
elements. This was readily achieved by using a high-speed digital computer 
which was programmed to locate the desired roots automatically. 



342 I .  CT. Currie 

The variation of the critical Rayleigh number with the thermal depth E is 
shown in figure 2, and the corresponding wave-number variation is shown in 
figure 3. The critical Rayleigh number R, is 1707.8 at E = 1, which corresponds to 
the case of a uniform temperature gradient. The value of R, has a minimum of 
1340, which occurs a t  E = 0.72, and reaches the value of 1707.8 again at  E = 0-47. 

103 
0 0.1 0.2 0 3  0.4 0.5 06 0.7 0.8 0.9 1.0 

Thermal depth E 

FIGURE 2. Critical Rayleigh number, R, = ag(T, - T,)h3/m,  as a function 
of the thermal depth, E = I/h. 

As E -+ 0 the critical Rayleigh number, when based on the overall fluid depth h, 
increases without limit. However, investigation of the limit shows that if the 
Rayleigh number is based on the thermal depth I, the critical value is 32 as e+ 0. 
The wave-number corresponding to criticality shows no minimum, but increases. 
monotonically from a value of 3-117 a t  E = 1 to infinity at  e = 0. 

In order to interpret these results, suppose that a fluid, which is initially iso- 
thermal and at rest, is heated from below in some manner beginning at time t = 0. 
Then initially, the Rayleigh number R and the thermal depth e will both be zero. 
As time increases, both the Rayleigh number and the thermal depth will increase 
due to heat conduction in the fluid. That is, as time progresses the solution to the 
appropriate heat conduction problem will yield a monotonically increasing curve 
on figure 2. If the rate of heating is sufficiently high, the actual Rayleigh number 
curve will intersect the curve for the critical Rayleigh number, and beyond this 
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point an instability will manifest itself. The Rayleigh number existing at this 
point is the critical Rayleigh number for that type and rate of heating. The cor- 
responding value of e permits the wave-number of the initial disturbance to be 
calculated from figure 3. 

" 
0 0 2  0.4 06 0 8  1.0 

Thermal depth E 

FIGURE 3. Critical wave-number, a, = kch, as a function of the thermal depth, E = l /h.  

There will clearly be a minimum heating rate which will just allow the heat 
conduction curve to intersect the critical Rayleigh number curve at 8 = 1. The 
time required for conduction to establish the required RayIeigh number of 1707.8 
in this case will be large, and the temperature gradient at  criticality will be 
approximately uniform. Increasing the heating rate will steepen the actual Ray- 
leigh number curve when plotted on figure 2 so that, for a continuous variation 
of the heating rate, it  will be possible to obtain critical Rayleigh numbers which 
vary from 1340 to very large values. The latter correspond to rapid rates of heat- 
ing and highly non-uniform temperature gradients at  criticality. 

4. Comparison with experiments 
It was found in $3 that the minimum value of the critical Rayleigh number is 

1340. This is in close agreement with the observations of de Graaf & van der Held 
(1953) who found that columnar instability could be induced at Rayleigh num- 
bers in excess of 1400. 
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The experimental arrangement used by Soberman (1959) was such that i t  
corresponds closely to the idealized case of constant heating through a finite fluid 
layer. Then the temperature T(O) will be given by the solution to the heat conduc- 
tion equation under the conditions that for t < 0 the temperature a t  6 = 0, 1 is 
TI, while for t > 0 the heat flux through the plane 6 = 0 is equal to a constant Q .  
The required solution is then, 

FIGURE 4. Stability curve for constant flux heating. The experimental points are due to 
Soberman and the dimensionless time from the onset of heating to marginal stability is 
7, = ( K / h a ) t c .  

where q is the thermal conductivity, 6 = z/h,  and T = (~ /hZ) t .  From the defini- 
tions of the Rayleigh number R and the thermal depth 8, equation (20) produces 
the following relations: 

Equations (2 1) and (22) trace a curve on figure 2 as r is varied from zero to infinity. 
The point at  which this curve intersects the critical Rayleigh number curve 
depends on the magnitude of the heating parameter ( a g Q h 4 ) / ( ~ v q )  appearing in 
equation (21). The variation of the critical Rayleigh number with this parameter 
is shown in figure 4 together with Soberman’s results. Both theory and experi- 
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ment show that the critical Rayleigh number may be considerably increased due 
to rapid heating. 

The discrepancy between theory and experiment may be accounted for, a t  
least in part, by the measuring technique used to determine the temperature 
difference (To - !PI) at criticality. Thermocouples were located at  points &in. 
above and below the centre line of the fluid layer, which was either +in. or 1 in. 
deep. The overall temperature difference was calculated by linearly extrapolating 
the values recorded at the two measuring points. Thus, the lack of curvature in the 

I I I 1 

ag/3h5/t@ v 
F I G ~ E  5. Stability curve for uniformly changing surface temperature. The experimental 
point is due to Spangenberg & Rowland and the dimensionless time from the onset of 
heating to marginal stability is 7, = (K/h2) t,. 

1 06 107 108 109 1010 10" 

assumed temperature profile would result in an underestimate of the overall 
temperature difference and hence an underestimate of the Rayleigh number. This 
effect would be most pronounced at the higher heating rates. 

The experiments of Spangenberg & Rowland (1961), involving sudden evapora- 
tive cooling of a layer of water, showed that the surface temperature decreased 
almost linearly in time up to the onset of instability. Then the temperature T(O) 
will be given by the solution of the heat conduction equation where for t < 0 the 
temperature a t  6 = 0 , l  is T,, while for t > 0 the temperature a t  6 = 1 is decreasing 
by an amount Pt. Solving the heat conduction equation and using the definitions 
of R and E results in the following expressions: 

where T = (~/h2)t. The point of intersection of the curve defined by (23 )  and (24) 
with the curve of figure 2 depends on the magnitude of the parameter (agPh5)/(~2v) 
which appears in (23). The variation of the critical Rayleigh number with this 
parameter is shown in figure 5. Since the rate of evaporation and hence the rate 
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of cooling was not controlled in Spangenberg & Rowland’s experiments, only one 
experimental point was obtained. This point is also shown in figure 5. Both theory 
and experiment agree in the fact that the critical Rayleigh number is increased by 
almost four orders of magnitude. The theoretical time for the onset of instability 
is 20 s after the onset of cooling, whereas the observed time was 70 s. 

The fact that the experimental point lies above the theoretical curve in figure 5 
may be attributed, in part, to the definition of the critical Rayleigh number. The 
onset of instability was defined by Spangenberg & Rowland as the point at which 
a motion of the fluid was first observed. In  the analysis, the onset of instability 
was defined as the point a t  which the fastest growing wave becomes marginally 
stable. Thus a certain time must elapse before the disturbance develops from an 
infinitesimal amplitude to a perceptible fluid motion. During this time the surface 
temperature of the fluid continues to decrease uniformly so that the Rayleigh 
number continues to increase. Thus, the fact that the experiment,al values of R, 
and 7, are greater than the theoretical values is consistent and in qualitative 
agreement with the circumstances. 

The experiments discussed above are the only experiments known to the author 
in which numerical data for the onset of instability are recorded for an anomalous 
mode of motion. However, data exist for the minimum Rayleigh number of the 
sustained form of columnar motion as recorded by Chandra (1938) and by Sutton 
(1950). These Rayleigh numbers are smaller than the values predicted by the 
classical theory. 

In  order to explain one of the fundamental differences between rolling and 
columnar instability, consider first a fluid which is heated slowly so that the 
temperature gradient is approximately uniform. Then from figure 3 it is seen that 
the wave-number of the initial disturbance will be 3-117, since E will be close to 
unity. Thus, as time progresses beyond T,, the value corresponding to marginal 
stability, thevalue of E ,  and hence the wave-number will remain unchanged. That 
is, the same wave component will be the fastest growing throughout the growth 
time so that the initially unstable wave will have approximately the same form as 
the final flow field, although the latter may be distorted due to finite amplitude 
effects. 

Now consider rapid heating. There will be some wave-number a, of the initially 
unstable wave, with a, > 3.117. The corresponding value of E will be less than 
unity. Now as time progresses beyond T,, conduction will continue so that E will 
continue to increase. Thus the wave-number of the fastest growing disturbance 
will be continuously changing. This means that the form of the final flow field will 
probably bear very little resemblance to the form of the initial instability. 

From experiments it is known that in columnar motion the rising fluid occupies 
a much smaller flow area than the descending fluid, or vice versa. Furthermore, 
the temperature profile is distorted substantially from the approximately linear 
variation which exists in the two-dimensional rolls. These facts would seem to 
indicate that the columnar mode is a non-linear mode and so the linear methods 
which have been so successful in analysing the rolling motion would not be 
expected to succeed in analysing columnar motion. 
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5. Concluding remarks 
The effect of a strongly non-uniform temperature gradient on the criterion for 

marginal stability has been established. It has been shown analytically that the 
method and rate of heating may greatly influence the value of the Rayleigh num- 
ber existing a t  marginal stability. For slow heating, the critical Rayleigh number 
for a fluid with two rigid boundaries agrees with the classical value of 1707.8. 
However, at  higher heating rates, the critical Rayleigh number may be as low as 
1340 or it may be increased indefinitely. The wave-number of the initially un- 
stable wave will always be greater than the classical value of 3.117 when the heat- 
ing is not slow. The findings on marginal stability are in good qualitative agree- 
ment with the published experimental findings. 

The author would like to express his gratitude to Dr W. D. Rannie €or many 
useful discussions on this problem. Financial support for this work was provided, 
in part, by the National Science Foundation. 
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